Workshop on Membrane Protein Production on May 8th

Wednesday May 8th 2013, 2:00 PM to 5:00 PM
Knapp Center for Biomedical Discovery, room 3200
University of Chicago (directions)


This expression test gel was produced by Bea Hoffman from Volker Dötsch‘s lab

Join us for an afternoon to discuss topics on membrane protein production and modification.  Topics will include cellular and cell-free production of membrane proteins, reconstitution, incorporation of unnatural amino acids, single antigen binder technologies, and chemistry of protein modification and nitroxide spin labels.

Click here to register

Schedule

2:00    Brandy Verhalen, Vanderbilt University, and Yelena Peskova, University of Virginia: Expression in eukaryotic cells and reconstitution into nanodiscs.

2:20    Shohei Koide, University of Chicago: Use of designed binding proteins for structural and functional studies

2:40    Ray Hulse, University of Chicago: Strategies for NMR sample preparation

3:00    Edith Buchinger, Goethe University: Cell-free protein synthesis for NMR

3:20    Break

3:40    Stephen Pless, University of Iowa: Use of nonsense suppressors in ooctyes

4:00    Lilia Leisle, University of Iowa: Selection of tRNA synthetases for in vivo incorporation of unnatural amino acid

4:20    Andrzej Rajca, University of Nebraska: Next generation nitroxide spin labels

4:40    Discussion

5:00    End of workshop

Collaborative MPSDC team develops innovative computational simulation technique

With our 2013 annual meeting less than a month away, we are delighted to share with you the news about a new computational simulation technique developed by several MPSDC team members that was first presented at last year’s Frontiers in Membrane Protein Dynamics conference. The development of this technique speaks to the significant scientific collaborations that take place under the umbrella of the Consortium, as well as the scientific conversations that began in Chicago last year.

At the conference, Benoît Roux from our Computational Modeling Core introduced his team’s findings obtained from DEER (Double Electron-Electronic Resonance) data. At the conference, Roux and his team received helpful feedback from a number of scholars affiliated with the MPSDC as well as external invitees. After the conference, Roux and his team collaborated with a number of other scientists, including consortium colleague Hassane Mchaourab, to develop a novel computational simulation technique for exploiting the information from distance distribution data obtained from ESR/DEER spectroscopy for the refinement of membrane protein structures. This simulation technique, called the Restrained-Ensemble Molecular Dynamics (REMD) simulation method, uses a global ensemble-based energy restraint to force the spin-spin distance distribution histograms calculated from a multiple-copy molecular dynamics simulation to match those obtained from ESR/DEER experiments.

Already, the method has yielded three unique publications detailing the results of these experiments:

  • Islam, S. M.; Stein, R.; Mchaourab, H.; Roux, B. Structural Refinement from Restrained-Ensemble Simulations Based on EPR/DEER Data: Application to T4 Lysozyme, J. Phys. Chem. B 117(17): 4740-54, 2013. (link)
  • Roux, B.; Islam, S. M. Restrained-Ensemble Molecular Dynamics Simulations Based on Histograms from Double Electron-Electron Resonance Spectroscopy, J. Phys. Chem. B 117(17): 4733-9, 2013, In Press. (link)
  • Roux, B.; Weare, J. On the statistical equivalence of restrained-ensemble simulations with the maximum entropy method, J. Chem. Phys. 138(8): 084107, 2013. (link)

The article co-authored by Benoît Roux and Jeane Weare was highlighted by the Journal of Chemical Physics on their Top 20 Most Read in March 2013.

Roux and his team have also gone on to apply this method to VSD (voltage-sensing domain) data with Eduardo Perozo, and Glt(Ph) data with Olga Boudker. Additionally, Wonpil Im is also implementing an easy setup of this method with dummy spin-labels on his CHARMM-GUI generator.

Shahidul M. Islam from Roux’s team, who co-authored two of the above papers and has been deeply involved in the scientific process, provided the MPSDC with an overview of the technique and its utility. We invite you to read his overview here »

Congratulations to all involved in the development of this exciting and important new method!

Overview: Structural Refinement Based on EPR Data from Restrained-Ensemble Simulation

Shahidul M. Islam,† Richard A. Stein,‡ Hassane S. Mchaourab,‡ and Benoît Roux

† Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
‡ Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee

Membrane proteins perform numerous physiological functions that are critical for human health. They account for 60% of drug targets and mutations in their primary sequence hamper their normal function, which can lead to various diseases. Membrane proteins act like “molecular machines”, changing their shape and visiting many conformational states to perform their function. Knowledge of all the important states is critical to understand these proteins; however, the process of obtaining such structural information is not at all straightforward. While X-ray crystallography is commonly the best technique to obtain high-resolution structural information of proteins, it is important to achieve a more complete picture of the accessible conformational states of a protein in its native environment, free from the constraints of the crystal lattice. Moreover, membrane proteins are underrepresented in the protein structure data bank.

Two important spectroscopic approaches occupy a central role in the efforts to understand structure and function of membrane proteins: nuclear magnetic resonance (NMR) and electron spin resonance (ESR). However, NMR investigations are limited by the size of the protein system, while ESR requires the introduction of spectroscopic probes into the system via site-directed spin-labeling (SDSL) techniques. Recently, a novel computational simulation technique was developed to exploit the information from distance distribution data obtained from ESR/DEER spectroscopy for the refinement of membrane protein structures. This simulation technique, called the Restrained-Ensemble Molecular Dynamics (REMD) simulation method, uses a global ensemble-based energy restraint to force the spin-spin distance distribution histograms calculated from a multiple-copy molecular dynamics simulation to match those obtained from ESR/DEER experiments.An important advantage of ESR technique is that it provides strong signal from the spin labels in the case of extremely large macromolecular complexes, such as in the case of large membrane proteins. Of particular interest, DEER (Double Electron-Electron Resonance) is a powerful ESR technique that makes it possible to measure the distance histogram between a pair of spin-labels inserted in a macromolecule.

The most commonly used nitroxide spin-label is MTSSL (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl-methanethiosulfonate), which is typically linked to a cysteine residue in the protein through a disulphide bond (Figure 1A). The MTSSL moiety has five dihedral bonds, resulting in a highly flexible side-chain once linked to a protein. Because of this flexibility, spin label incorporation does not lead to significant changes of the original protein conformation; however, it introduces complexity in “translating” the ESR data on the spin labels to obtain structural information on the protein itself. A reliable characterization of the dynamical properties of the spin-label is therefore essential to fully exploit the spin-pair distance histograms for the purpose of structural refinement of membrane proteins. Computational modeling methods, such as the Multiscale Modeling of Macromolecular systems (MMM) software package of Yevhen Polyhach and Gunnar Jeschke1,2, and the PRONOX algorithm of Hatmal et al,3 have been developed to determine the inter-label distances distributions based on the analysis of spin-label rotamers. In spite of these efforts, there remains a need to develop a robust and effective computational method for making best use of ESR/DEER data in the context of structural refinement. All the previous computational simulation studies4-7 and modeling methods1,3 use the ESR/DEER distance histogram in post-analysis, to assess the correctness of models that were generated independently from the experimental data. In other words, none of the existing methods “drive” the structural model toward a 3D conformation that satisfies the ESR/DEER data.

(click to enlarge)

Figure 1. (A) Cartoon representation of T4 lysozyme (T4L) with 37 spin-labeled sites (colored in blue). As an Enrolling in Medicare Hospital affordablehealth.info (Medicare Part A) is a no brainer. example, the structural formula of two spin label side chains at positions 62 and 109 in T4L is shown here. The Restrained-Ensemble (RE) simulation method has been developed to restrain the calculated spin-spin distance distributions obtain from MD simulation to match with those obtained from the ESR/DEER, (B) From RE simulation, the dynamics of nitroxide oxygen of spin-labels around the Cα atom was obtained, (C) A simplified dummy nitroxide spin-label was designed and parameterized, (D) The simplified dummy spin-labels along with RE simulation refined distorted structures of T4L which is illustrated with root mean square deviation of the backbone atoms with respect to the X-ray structure (colored in blue). NOE-like distance restraints were unable to refine many of the distorted structures (colored in black).



Recently,8-10 a novel computational simulation technique was developed to exploit the information from distance distribution data obtained from ESR/DEER spectroscopy for the refinement of membrane protein structures. This simulation technique, called the Restrained-Ensemble Molecular Dynamics (REMD) simulation method, uses a global ensemble-based energy restraint to force the spin-spin distance distribution histograms calculated from a multiple-copy molecular dynamics simulation to match those obtained from ESR/DEER experiments. The REMD simulation method was applied to 51 ESR/DEER distance histogram data from spin-labels inserted at 37 different positions in a membrane protein, as well as the T4 lysozyme (T4L) (as shown in Figure 1). The T4 lysozyme is typically used as a model system by the ESR community due to the availability of extensive amount of structural data from X-ray crystallography, NMR and multifrequency ESR experiments. Millions of data were collected and stored in a rotameric library for the spin label side chains at various positions in T4L. The rotamer population distributions are shown to be consistent with available information from X-ray crystallography. From the all atom RE simulations, the authors designed and parameterized a simplified nitroxide dummy spin-label (Figure 1B and 1C), which was finally used for the purpose of structural refinement. The authors finally demonstrated that RE simulations with the dummy nitroxide spin-labels imposing the ESR/DEER experimental distance distribution data are able to systematically correct and refine a series of distorted T4L structures (Figure 1D). This computationally efficient approach allows experimental restraints from DEER experiments to be incorporated into RE simulations for efficient structural refinement. It is expected that this novel simulation method will revolutionize our perspective on the refinement of membrane proteins. The authors are currently investigating several important membrane proteins such as the ion channels and transmembrane proteins with this Restrained-Ensemble simulation method.

References

(1) Polyhach, Y.; Bordignon, E.; Jeschke, G. Rotamer libraries of spin labelled cysteines for protein studies, Phys. Chem. Chem. Phys., 2011, 13, 2356.

(2) Jeschke, G. DEER distance measurements on proteins, Annu Rev Phys Chem, 2012, 63, 419.

(3) Hatmal, M. M.; Li, Y.; Hegde, B. G.; Hegde, P. B.; Jao, C. C.; Langen, R.; Haworth, I. S. Computer modeling of nitroxide spin labels on proteins, Biopolymers, 2012, 97, 35.

(4) Polyhach, Y.; Godt, A.; Bauer, C.; Jeschke, G. Spin pair geometry revealed by high-field DEER in the presence of conformational distributions, J. Magn. Reson., 2007, 185, 118.

(5) Tikhonova, I. G.; Best, R. B.; Engel, S.; Gershengorn, M. C.; Hummer, G.; Costanzi, S. Atomistic insights into rhodopsin activation from a dynamic model, J. Am. Chem. Soc., 2008, 130, 10141.

(6) Ding, F.; Layten, M.; Simmerling, C. Solution structure of HIV-1 protease flaps probed by comparison of molecular dynamics simulation ensembles and EPR experiments, Journal of the American Chemical Society, 2008, 130, 7184.

(7) Boura, E.; Rozycki, B.; Herrick, D. Z.; Chung, H. S.; Vecer, J.; Eaton, W. A.; Cafiso, D. S.; Hummer, G.; Hurley, J. H. Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy, Proc. Natl. Acad. Sci. USA, 2011, 108, 9437.

(8) Roux, B.; Islam, S. M. Restrained-Ensemble Molecular Dynamics Simulations Based on Histograms from Double Electron-Electron Resonance Spectroscopy, J. Phys. Chem. B, 2013, In Press. (link)

(9) Roux, B.; Weare, J. On the statistical equivalence of restrained-ensemble simulations with the maximum entropy method, J. Chem. Phys., 2013, 138. (link)

(10) Islam, S. M.; Stein, R.; Mchaourab, H.; Roux, B. Structural Refinement from Restrained-Ensemble Simulations Based on EPR/DEER Data: Application to T4 Lysozyme, J. Phys. Chem. B, 2013, In Press. (link)

Benoît Roux receives Great Lakes Consortium award access to Blue Waters supercomputer

The Great Lakes Consortium for Petascale Computation has awarded access to the Blue Waters supercomputer — which is capable of performing quadrillions of calculations every second and of working with quadrillions of bytes of data — to 10 diverse science and engineering projects, including a project titled “The mechanism of the sarco/endoplasmic reticulum ATP-driven calcium pump”, spearheaded by Benoît Roux and his team.

Blue Waters supercomputer. Click to enlarge.

The Great Lakes Consortium for Petascale Computation is a collaboration among colleges, universities, national research laboratories, and other educational institutions that facilitates the widespread and effective use of petascale computing. The computing and data capabilities of Blue Waters will assist researchers in addressing questions of biology, nanoelectronics, ecological and economic impacts of climate change, and more.

Roux’s work with the Blue Waters supercomputer will make a significant contribution to the Conformational Transitions in P-class ATPases Project of the Membrane Protein Structural Dynamics Consortium (MPSDC), in which Roux collaborates with Francisco Bezanilla. Roux’s team provided the following description of their research plans with Blue Waters:

Maintaining optimum concentration gradients of monovalent (Na+, K+) and divalent (Ca2+) ions across cell membranes is a crucial part of signaling and regulation of many biological processes. Positively charged ions, being impermeable to largely hydrophobic cell membranes, need special passages to travel in and out of the living cell. Nature’s answer to this problem is two classes of membrane proteins called ion channels and ion pumps. Ion channels are responsible for the passive transport of selected ions, while ion pumps consume ATP to transport ions against their gradient.

Understanding the detailed molecular mechanism of ion pumps has been a long standing problem. In the early parts of the previous decade, a major breakthrough came in the form of determination of atomic resolution X-ray crystal structures of calcium transporting pump of sarcoplasmic reticulum of skeletal muscles (SERCA) that uses ATP hydrolysis as a source of free energy. Detailed structural studies of the pump under different conditions provided analogues of various intermediates in the reaction cycle and revealed important changes in the tertiary structure of the protein both in the cytoplasmic and in the transmembrane parts. Two major outstanding issues are the pathways of the ions to and from the transmembrane binding sites and a detailed understanding of the large scale conformational changes among various functionally relevant states. We will apply all-atom molecular dynamics (MD) and string method with swarms-of-trajectories to study transition pathways among various experimental structures.

The allocations provided on the Blue Waters supercomputer will allow us to study this important membrane protein with unprecedented detail. This study will reveal the molecular mechanism of an important step in the ion pumping process of a P-type ATPase and will provide a solid ground to understand other ATP-driven ion pumps such as the sodium-potassium pump, which shares very high sequence similarity with SERCA.

Congratulations to Benoît and his team for receiving this important award!

Learn more about the Blue Waters supercomputer »

Membrane Protein Modeling workshop to take place at the University of Chicago on May 7th

During the week of the Membrane Protein Structural Dynamics Consortium (MPSDC)’s Annual Meeting, a workshop specifically dedicated to Membrane Protein Modeling will be held at the University of Chicago on Tuesday, May 7th. This Workshop is designed to provide an introduction to the most important computational tools and techniques used in molecular dynamics simulations of membrane proteins, including utilization of the programs NAMD and VMD, as well as the CHARMM-GUI Membrane Builder. We will also cover the use of force field parameterization tools. The workshop will include a practical “hands-on” session.

The Workshop is co-organized by the Computational Modeling Core (CMC) of the MPSDC and the Theoretical and Computational Biophysics Group (TCBG) of the University of Illinois at Urbana-Champaign.

Register for the CMC Membrane Protein Workshop (required) »



Last year’s CMC Workshop, also held at the University of Chicago.

Categories
Recent Posts
Archives
Recent Comments
Recent Photos